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Abstract

For the spatially coupled free vibration analysis of thin-walled composite I-beam with symmetric and arbitrary

laminations, the exact dynamic stiffness matrix based on the solution of the simultaneous ordinary differential equations is

presented. For this, a general theory for the vibration analysis of composite beam with arbitrary lamination including the

restrained warping torsion is developed by introducing Vlasov’s assumption. Next, the equations of motion and

force–displacement relationships are derived from the energy principle and the first order of transformed simultaneous

differential equations are constructed by using the displacement state vector consisting of 14 displacement parameters.

Then explicit expressions for displacement parameters are derived and the exact dynamic stiffness matrix is determined

using force–displacement relationships. In addition, the finite-element (FE) procedure based on Hermitian interpolation

polynomials is developed. To verify the validity and the accuracy of this study, the numerical solutions are presented and

compared with analytical solutions, the results from available references and the FE analysis using the thin-walled

Hermitian beam elements. Particular emphasis is given in showing the phenomenon of vibrational mode change, the effects

of increase of the modulus and the bending–twisting coupling stiffness for beams with various boundary conditions.

r 2008 Published by Elsevier Ltd.
1. Introduction

Thin-walled beams made of anisotropic materials have increased in use in many civil, mechanical and
aerospace engineering applications because of the high strength-to-weight and stiffness-to-weight ratios and
their ability to be tailored to meet the design requirements of stiffness and strength. Other advantages that
motivate some applications are corrosion resistance, magnetic transparency, low thermal expansion, and
excellent fatigue characteristics in the direction of the fibers. For any structure that may be subjected to
dynamic loads, the determination of the natural frequencies is critical in the design process. It is usually the
first step in a dynamic analysis since a great deal may be deduced concerning the structural behavior and
integrity from the knowledge of its natural frequencies and mode shapes.
ee front matter r 2008 Published by Elsevier Ltd.
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Up to the present, for the free vibration analysis of composite beams, the finite-element (FE) method has
been widely used because of its versatility and a large amount of work [1–13] was devoted to the improvement
of composite finite elements in order to obtain the acceptable results. Piovan and Cortı́nez [1] developed a new
theoretical model for the free vibration, static, and buckling analyses of anisotropic open and closed cross-
section composite thin-walled beams with general stacking sequences and arbitrary states of initial stresses and
off-axis loadings. They took into account, in a full form, the shear flexibility due to bending and warping and
introduced a non-shear-locking 7 dof per a node to validate their model. Lee and Kim [2] developed a
displacement-based one-dimensional (1D) FE model to predict natural frequencies and corresponding
vibration modes for a thin-walled composite I-beam. Through numerical results, they addressed the effects of
fiber angle, modulus ratio, height-to-thickness ratio, and boundary conditions on the vibration frequencies of
composite beam. Three higher-order displacement modes have been proposed and tested by Marur and Kant
[3] for free vibration analysis of composite beams with various boundary conditions and aspect ratios using
the FE modeling based on isoparametric formulations. The free vibration characteristics of laminated
composite beams using the FE analysis and the higher-order plate theory was studied by Chandrashekhara
and Bangera [4]. They incorporated a Poisson’s effect, which was often neglected in 1D laminated beam
analysis, in the formulation of the beam constitutive equation. Shi and Lam [5] presented the derivation of the
variational consistent stiffness and mass matrices for the FE modeling of a composite beam. The two-noded
higher-order composite beam element possessed a linear bending strain as opposed to the constant bending
strain in the existing higher-order composite beam elements with the same number of nodal degrees of
freedom (dof) [3,4,6]. A higher-order shear deformation theory and the conventional first-order theory were
used by Maiti and Sinha [7] to develop a FE method to analyze accurately the free vibration behavior of
laminated composites, using nine-noded rectangular isoparametric elements. Rao and Ganesan [9] examined
the harmonic response of tapered composite beams using the FE analysis based on the higher-order shear
deformation theory. Nabi and Ganesan [9] studied bi-axial bending, axial and torsional vibrations using the
FE method and the first-order shear deformation theory. Hodges et al. [10] solved the equations of motion by
a mixed FE method, and compared the FE results with an exact integration method, based on the transfer
matrix approach. They showed that the free vibration characteristics of composite beams are sensitive to the
assumptions used in determining the cross-sectional stiffnesses. Stemple and Lee [11] successfully employed
their finite-element-based structural model with dynamic analysis and presented the vibrational characteristics
of both solid and thin-walled cross-section as a function of their angular velocity. Also a two-noded, 10 dof
per node, laminated composite thin-walled beam FE was developed by Wu and Sun [12] for vibration analysis
based on modified assumptions of classical isotropic thin-walled beam theory. Gupta et al. [13] derived a two-
noded, 8 dof per node, beam FE for laminated anisotropic thin-walled beams with open section. The
displacements of the element reference axes were expressed in terms of 1D first-order Hermitian interpolation
polynomials.

On the other hand, considerable research [14–24] for analytical solutions of the vibrational analysis of
composite beams has been done. Cortı́nez and Piovan [14] obtained an analytical solution of the developed
equation for the case of simply supported thin-walled beams with open or closed cross-section for free
vibration problems in a unified fashion. also for calculating the circular frequencies of freely vibrating beams;
Closed-form solutions were derived by Kollár [15] for the simply supported thin-walled open section
composite beam including the effect of shear deformations and an approximate solution was also suggested.
Matsunaga [16] derived a set of fundamental dynamic equations of a 1D higher-order theory for laminated
composite beams through Hamilton’s principle by using the method of power series expansion of displacement
components. Song and Librescu [17] presented an analytical study devoted to the mathematical modeling of
spinning anisotropic thin-walled beams. Special attention was paid to the influence played by anisotropy of
constituent materials, boundary conditions and spinning speed on forward and backward precession
frequencies and on instability speed. Also they [18] proposed an analytical model for dynamic analysis of
anisotropic composite thin-walled closed beams. This model took into account the shear flexibility due to
bending displacements in addition to primary and secondary warping effects. Song and Waas [19] studied the
free vibration solution of stepped laminated composite beams of rectangular cross-section using a simple
higher-order theory which assumes a cubic distribution for the displacement field through the thickness. They
used a method of separation of variables to governing equations and obtained 12 homogenous linear algebraic
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equations by applying appropriate boundary conditions. then; They obtained the solutions of homo-
geneous equation using a numerical solver. Teboub and Hajela [20] used a first-order shear deformation
theory to analyze the free vibrations of generally layered composite beams. The equations of motion
were integrated with the aid of a symbolic manipulation program. Various results have been included to
show the effects of the beam geometry, boundary conditions, Poisson’s effect, material anisotropy,
and coupling of stiffnesses, on the natural frequencies of composite beams. The study by Farghaly and
Gadelrab [21] who used exact analytical solutions was concerned with an additional expected gain in natural
frequencies for a one-span beam with a stepwise variable cross-section made of unidirectional fiber composite
materials of different fiber volume fraction. A theoretical study of the free vibration characteristics of
thin-walled composite blades has been presented by Rand [22]. The exact solutions for the natural frequencies
of symmetrically laminated composite beams have been predicted by Chandrashekhara et al. [23] using the
first-order shear deformation theory. The numerical analysis was based on reducing a detailed structural
formulation, which included an out-of-plane warping deformation to a beam-type formulation. Vinson and
Sierakowski [24] obtained the exact solution of a simply supported composite beam based on the classical
theory.

As an alternative approach to calculate the natural frequency of composite beam, the transfer matrix
method has been used in Refs. [25–27]. Yildirim et al. [25] studied in-plane and out-of-plane free vibration
problems of symmetric cross-ply laminated composite beams using the transfer matrix method. Thereafter, as
a continuation of Yildirim et al. [25], Yildirim and Kiral [26] performed the out-of-plane free vibration
analysis of symmetric cross-ply laminated composite beams. The relative difference between the 1st six non-
dimensional frequencies obtained by the Bernoulli–Euler and Timoshenko beam theories was presented for
different length to thickness ratios, thickness to width ratios and different type of boundary conditions.
Khdeir and Reddy [27] employed the transfer matrix method in the free vibration analysis of cross-ply
laminated beams based on the higher-order shear deformation theory.

Another effective method solving the dynamic problem of composite beams was to develop the exact
dynamic stiffness matrix based on the solution of the simultaneous ordinary differential equations. Banerjee
and Williams [28,29] have developed the dynamic stiffness matrices of a composite beam [28] and a composite
Timoshenko beam [29] in order to investigate their free vibration characteristics. The associated theories
accounted for the effect of the material coupling between the bending and torsional modes of deformation
which is usually present in composite beams, such as aircraft wings. And an explicit analytical expression for
each of the elements of the dynamic stiffness was derived by rigorous use of the symbolic computing package.
Thereafter, Banerjee [30] extended the earlier theories of Banerjee and Williams [28,29] by including the effect
of an axial force. Also Banerjee [31] derived analytical expressions for the frequency equation and mode
shapes of a bending–torsion materially coupled composite Timoshenko beam with cantilever end condition in
explicit form using the symbolic computing package. Abramovich [32] presented exact solutions for
symmetrically laminated beams with 10 different boundary conditions using the exact element method. This
exact element method uses the exact shape functions of the beam that are represented by converging infinite
series. Using these shape functions, the solution can be obtained with any desired accuracy yielding the exact
one. Abramovich and Livshits [33] extended the approach of Abramovich [32] to include non-symmetric lay-
ups. Also Abramovich et al. [34] applied the exact element method to calculate the natural frequencies and the
influence of the axial load on the natural frequencies and mode shapes of non-symmetric laminated composite
beams. Dynamic stiffness analysis of symmetric and non-symmetric cross-ply laminated beams has been
presented by using a first-order shear deformation theory by Eisenberger et al. [35]. However, the above-
mentioned works [28–35] considered only the dynamic stiffness of composite beam with rectangular cross-
section.

Even though a significant amount of research has been conducted on development of improved composite
beam elements, to the best of authors’ knowledge, there was no study reported on the exact solutions for the
free vibration analysis of thin-walled composite beam with arbitrary lamination in the literature. The dynamic
behavior of thin-walled composite beam with arbitrary lamination is very complex due to the coupling effect
of extensional, bending, and torsional deformations and many researchers thought that it is too complex to
solve the vibrational problem exactly for the spatially coupled thin-walled composite beam due to an
aforementioned reason.
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The aim of this study is to present the exact dynamic stiffness matrix that can be used in analyzing the free
vibrational behavior of thin-walled I-beam made from fiber-reinforced laminates with symmetric and
arbitrary laminations. A significant point of departure of the present approach from other methods is in the
solution of spatially coupled equations of motion that arise in the solutions scheme. Rather than using a
discrete integration scheme or a method based on energy principles which may perform poorly for stiff
systems, the present approach advocates the use of direct evaluation schemes using symbolic manipulation.
The important points presented are summarized as follows:
1.
 A general theory is developed for the free vibration analysis of thin-walled composite beam with arbitrary
lamination.
2.
 The numerical method using a generalized linear eigenproblem having complex eigenvalues to evaluate
exactly the dynamic stiffness matrix of thin-walled composite beam is presented.
3.
 In addition, the FE procedure using the Hermitian beam elements including the restrained warping effect is
presented.
4.
 To verify the validity and the accuracy of this study, the natural frequencies of composite I-beam with
various boundary conditions are evaluated and compared with analytical solutions by other researchers,
the results from available references and the FE analysis using the thin-walled Hermitian beam elements.
Particularly, the mode change phenomenon, the effects of increase of the modulus and the bending–twisting
coupling stiffness for beams with various boundary conditions are investigated.

2. Vibration theory of thin-walled composite beam with arbitrary lamination

In this study, for the spatially coupled vibration analysis of a thin-walled composite beam with arbitrary
lamination, the classical Vlasov’s assumptions are adopted. Fig. 1 shows three sets of coordinate systems
which are mutually interrelated; an orthogonal Cartesian coordinate global system (x1, x2, x3) for the beam,
an orthogonal local coordinate system (n, s, x1) for the plate segment of the beam, where the n axis is the
normal to the mid-surface of any plate segment and the s axis is tangential to the mid-surface along the
contour line of the beam cross section; and a contour coordinate system S, where S is measured along
the contour line of the cross section from a chosen origin O. The point P denotes the pole axis and is placed at
an arbitrary point yp and zp. Figs. 2a and b show the nodal displacements and force vectors, respectively,
Fig. 1. Pictorial definitions of coordinates in thin-walled section.
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Fig. 2. Displacement parameters and stress resultants.
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Under consideration where Ux, Uy, and Uz and o1( ¼ y), o2( ¼ �Uz
0), and o3( ¼ �Uy

0) are rigid body
translations and rotations with respect to x1-, x2-, and x3-axis, respectively, and f(�y0) is the warping
parameter. From the study by Gjelsvik [36], displacement components u, v, and w of arbitrary points in the
contour coordinate system can be expressed as follows:

uðs;x1Þ ¼ Uyðx1Þ sin cðsÞ �Uzðx1Þ cos cðsÞ � yðx1ÞqðsÞ (1a)

vðs; x1Þ ¼ Uyðx1Þ cos cðsÞ þUzðx1Þ sin cðsÞ þ yðx1ÞrðsÞ (1b)

wðs;x1Þ ¼ Uxðx1Þ �U 0yðx1Þx2 �U 0zðx1Þx3 � y0ðx1Þf (1c)

where the prime indicates the differentiation with respect to x1 and f is the normalized warping function.
The constitutive relations by Jones [37] for an arbitrary laminate are
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Bij ¼
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2
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Dij ¼
1

3
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Q̄
k

ijðt
3
k � t3k�1Þ ¼ t3dij (3c)

In the above equations, Aij, Bij, and Dij are the extensional, bending–extension coupling, and bending
stiffnesses, respectively. Also Q̄ij denotes the lamina stiffness coefficient; ex, es, and gxs are the membrane
strains of lamina; kx, ks, and kxs are the axial, tangential, and twist curvatures, respectively, of middle surface.

Based on the principle of virtual work [36], beam stress resultants are equivalent to distributions of plate
stress resultants acting on a cross section of a beam and these relationships between beam stress resultants and
plate ones are presented in Appendix A.

Recently, based on these transformation relationships and constitutive relations between the beam stress
resultants and the displacements, the Shin et al. [38] derived the elastic strain energy of thin-walled composite
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beam with arbitrary lamination during a displacement of the cross-section as follows:

PE ¼
1

2

Z l

o

AU 0
2
x þ I3U 00

2
y þ I2U 00

2
z þ 2I23U 00yU 00z þ Ify

002
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00
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0
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0
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0y00
i
dx1 (4)

where l denotes the length of beam and the detailed expressions of sectional quantities in Eq. (4) are presented
in Appendix B.

Also, the kinetic energy PM of the beam considering the rotary inertia effect is given by

PM ¼
1

2

Z
V

rð _u2 þ _v2 þ _w2ÞdV (5)

where r is the density and substitution of displacement components into Eq. (5) leads to

PM ¼
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where o is the frequency of harmonic vibration; A*, I�2; I�3; I�o; I�23 and I�f are the cross-sectional area, the 2nd
moment of inertia about x2 and x3 axes, the polar moment of inertia, the product moment of inertia and the
warping moment of inertia, respectively. I�f2 and I�f3 are the product moments of inertia due to the normalized
warping. These section properties are defined as follows:
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In Eq. (6), the following geometric relations are used from Fig. 1:

y� yP ¼ q cos cþ r sin c (8a)

z� zP ¼ q sin c� r cos c (8b)
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Then, we consider the following total potential energy:

PT ¼ PE �PM �Pext (9)

where Pext is the external work corresponding to the element nodal forces.
Finally, by variation of the total potential energy with respect to displacement components Ux, Uy, Uz, and

y, the equations of motion for the spatially coupled free vibration analysis of thin-walled composite beam with
arbitrary lamination are derived as follows:

AU 00x � S3U 000y � S2U
000
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00
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þ ro2A�Ux ¼ 0 (10)
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From Eq. (10), we can obtain the following equation:
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A
U 0000y þ
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A
U 0000z �
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Substituting Eq. (14) into Eqs. (11)–(13), Eqs. (11)–(13) can be rewritten as
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where

~I2 ¼ I2 �
S2
2

A
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and geometric and natural boundary conditions are as follows:

dUxðoÞ ¼ dUp
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q
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p
3; dUzðlÞ ¼ dUq

z or F3ðlÞ ¼ F
q
3 (19e,f)
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dyðoÞ ¼ dop
1 or M1ðoÞ ¼ �M

p
1; dyðlÞ ¼ doq

1 or M1ðlÞ ¼M
q
1 (19g,h)

�dU 0zðoÞ ¼ dop
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p
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q
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p
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and force–displacement relationships are as follows:
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0
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3. Exact dynamic stiffness matrix

3.1. Exact evaluation of displacement function

The exact displacement function for the vibration analysis of thin-walled composite beam with symmetric
and arbitrary laminations is evaluated. Eq. (10) and Eqs. (15)–(17) are the simultaneous ordinary differential
equations of the fourth order. To transform these equations into the simultaneous differential equations of the
first order, a displacement state vector consisting of 14 displacement parameters is defined by

d ¼ Ux;U
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y ;U

000
y ;Uz;U

0
z;U

00
z ;U
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T (21)

Based on Eq. (21), Eqs. (10) and (15)–(17) are transformed into the following simultaneous ordinary
differential equations of the first order with constant coefficients

d 01 ¼ d2 (22a)

Ad 02 ¼ �ro
2A�d1 þ S3d6 þ S2d10 � Sfd13 þ Swd14 (22b)

d 03 ¼ d4 (22c)

d 04 ¼ d5 (22d)
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d 05 ¼ d6 (22e)
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d 09 ¼ d10 (22i)

~I23d 06 þ
~I2d
0
10 þ

~If2d
0
14 ¼ � ro2 A�

A
S2d2 � ro2I�23d5 þ ro2A�d7 � ro2I�2d9

þ ro2A�ðy� yPÞd11 � ro2I�f2d13 � ~Hcd14 (22j)

d 011 ¼ d12 (22k)

d 012 ¼ d13 (22l)

d 013 ¼ d14 (22m)

�Sfd 02 þ
~If3d 06 þ

~If2d
0
10 þ

~Ifd 014 ¼ � ro2 A�

A
Swd2 � ro2A�ðz� zPÞd3 � ro2I�f3d5

�Hsd6 þ ro2A�ðy� yPÞd7 � ro2I�f2d9 þHcd10 þ ro2I�od11

þ ðJG � ro2I�fÞd13 �
SfSw

A
d14 (22n)

which can be compactly expressed as

Ad0 ¼ Bd (23)

where the components of matrices A and B are given in Appendix C.
In order to find the homogeneous solution of the simultaneous differential Eq. (23), the following eigenvalue

problem with non-symmetric matrix is taken into account:

lAZ ¼ BZ (24)

In practice, the general eigenvalue problem of Eq. (24) has the complex eigenvalue and the associated
eigenvector because the matrix A is symmetric but B is non-symmetric. An IMSL subroutine DGVCRG
(IMSL Library [39]) is adopted so that eigensolutions of 14 pairs are calculated as follows:

ðli;ZiÞ; i ¼ 1; 2; . . . ; 14 (25)

where

Zi ¼ hz1;i; z2;i; z3;i; z4;i; z5;i; z6;i; z7;i; z8;i; z9;i; z10;i; z11;i; z12;i; z13;i; z14;ii
T (26)

It is possible that the general solution of Eq. (23) is represented as the linear combination of eigenvectors
with complex exponential functions

dðxÞ ¼
X14
i¼1

aiZi e
lix ¼ XðxÞa (27)

where

XðxÞ ¼ Z1 e
l1x; Z2 e

l2x; Z3 e
l3x; Z4 e

l4x; Z5 e
l5x; Z6 e

l6x; Z7 e
l7x;

�
Z8 e

l8x; Z9 e
l9x; Z10 e

l10x; Z11 e
l11x; Z12 e

l12x; Z13 e
l13x; Z14 e

l14x
�

(28a)
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a ¼ ha1; a2; a3; a4; a5; a6; a7; a8; a9; a10; a11; a12; a13; a14i
T (28b)

In Eq. (28), X(x) and a are the 14� 14 matrix function made up of 14 eigensolutions and the integration
constants, respectively.

Next the complex coefficients a is represented with respect to 14 nodal displacement components. For this,
the nodal displacement vector at p and q which mean the two ends of the member (x ¼ 0, l) is defined by

Ue ¼ hU
p;UqiT (29a)

Uw ¼ hUw
x;U

w
y;U

w
z ;o

w
1;o

w
2;o

w
3; f

w
iT; w ¼ p; q (29b)

where

Up ¼ hUxðoÞ;UyðoÞ;UzðoÞ; yðoÞ;�U 0zðoÞ;U
0
yðoÞ;�y

0
ðoÞiT (30a)

Uq ¼ hUxðlÞ;UyðlÞ;UzðlÞ; yðlÞ;�U 0zðlÞ;U
0
yðlÞ;�y

0
ðlÞiT (30b)

By substituting coordinates of the member end (x ¼ 0, l) into Eq. (27) and accounting for Eq. (29), nodal
displacement vector Ue can be obtained as follows:

Ue ¼ Ea (31)

where E is evaluated from X(x) and presented as

E ¼

z1;1 z1;2 z1;3 z1;4 z1;5 z1;6 z1;7 z1;8 z1;9 z1;10 z1;11 z1;12 z1;13 z1;14

z3;1 z3;2 z3;3 z3;4 z3;5 z3;6 z3;7 z3;8 z3;9 z3;10 z3;11 z3;12 z3;13 z3;14

z7;1 z7;2 z7;3 z7;4 z7;5 z7;6 z7;7 z7;8 z7;9 z7;10 z7;11 z7;12 z7;13 z7;14

z11;1 z11;2 z11;3 z11;4 z11;5 z11;6 z11;7 z11;8 z11;9 z11;10 z11;11 z11;12 z11;13 z11;14

�z8;1 �z8;2 �z8;3 �z8;4 �z8;5 �z8;6 �z8;7 �z8;8 �z8;9 �z8;10 �z8;11 �z8;12 �z8;13 �z8;14

z4;1 z4;2 z4;3 z4;4 z4;5 z4;6 z4;7 z4;8 z4;9 z4;10 z4;11 z4;12 z4;13 z4;14

�z12;1 �z12;2 �z12;3 �z12;4 �z12;5 �z12;6 �z12;7 �z12;8 �z12;9 �z12;10 �z12;11 �z12;12 �z12;13 �z12;14

y1;1 y1;2 y1;3 y1;4 y1;5 y1;6 y1;7 y1;8 y1;9 y1;10 y1;11 y1;12 y1;13 y1;14

y3;1 y3;2 y3;3 y3;4 y3;5 y3;6 y3;7 y3;8 y3;9 y3;10 y3;11 y3;12 y3;13 y3;14

y7;1 y7;2 y7;3 y7;4 y7;5 y7;6 y7;7 y7;8 y7;9 y7;10 y7;11 y7;12 y7;13 y7;14

y11;1 y11;2 y11;3 y11;4 y11;5 y11;6 y11;7 y11;8 y11;9 y11;10 y11;11 y11;12 y11;13 y11;14

�y8;1 �y8;2 �y8;3 �y8;4 �y8;5 �y8;6 �y8;7 �y8;8 �y8;9 �y8;10 �y8;11 �y8;12 �y8;13 �y8;14

y4;1 y4;2 y4;3 y4;4 y4;5 y4;6 y4;7 y4;8 y4;9 y4;10 y4;11 y4;12 y4;13 y4;14

�y12;1 �y12;2 �y12;3 �y12;4 �y12;5 �y12;6 �y12;7 �y12;8 �y12;9 �y12;10 �y12;11 �y12;12 �y12;13 �y12;14

2
666666666666666666666666666664

3
777777777777777777777777777775

(32)

where

yi;j ¼ zi;j e
lj l ; i ¼ 1; 3; 7; 11; 8; 4; 12; j ¼ 1214 (33)

Elimination of the complex coefficients a from Eq. (27) using Eq. (31) yields the displacement state vector
consisting of 14 displacement components

dðxÞ ¼ XðxÞE�1Ue (34)

where X(x)E�1 denotes the exact interpolation matrix. In Eq. (34), the inverse of E is calculated using an
IMSL subroutine DLINCG (IMSL Library [39]).

3.2. Calculation of dynamic stiffness matrix

Now, we consider the nodal force vector at two ends p and q defined by

Fe ¼ hF
p;FqiT (35)
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where

Fw ¼ hF
w
1;F

w
2;F

w
3;M

w
1;M

w
2;M

w
3;M

w
fi

T; w ¼ p; q (36)

Using Eqs. (21), the force–displacement relationships in Eqs. (20a–g) of thin-walled composite beam can be
compactly rewritten as follows:

fðxÞ ¼ SdðxÞ (37)

where f ¼ hF1;F 2;F 3;M1;M2;M3;Mfi
T and each element of 7� 14 matrix S is presented in Appendix C.

Then substituting Eq. (34) into Eq. (37) leads to

fðxÞ ¼ SXðxÞE�1Ue (38)

And nodal forces at ends of element are evaluated as

Fp ¼ �fð0Þ ¼ �SXð0ÞE�1Ue (39a)

Fq ¼ fðlÞ ¼ SXðlÞE�1Ue (39b)

Consequently the exact dynamic stiffness matrix K(x) of a thin-walled composite beam with arbitrary
lamination is calculated as follows:

Fe ¼ KðxÞUe (40)

where

KðxÞ ¼
�SXð0ÞE�1

SXðlÞE�1

" #
(41)

The natural frequencies of vibration for the member are the values of o that cause the dynamic stiffness
matrix for the element to become singular as in Eq. (42). Here the incremental search method is applied to find
these values up to the desired accuracy

det KðxÞ
�� �� ¼ 0 (42)

It should be noted that the dynamic stiffness matrix in Eq. (42) is formed by frequency-dependent shape
functions which are exact solutions of the governing differential equations. Therefore, it eliminates
discretization errors and is capable of predicting an infinite number of natural frequencies by means of a finite
number of coordinates.

4. Finite element formulation

For the purpose of comparing the natural frequencies evaluated from the present dynamic stiffness matrix
with those from the numerical method, the FE model for thin-walled composite beam including the effects of
the arbitrary lamination and the restrained warping is presented. To accurately express the element
deformation, pertinent shape functions are necessary. Assuming that axial displacement is linear, the element
displacement parameters can be interpolated as follows:

Ux ¼ ZUx
x þ ð1� ZÞU z

x (43a)

Uy ¼ h1U
x
y þ h2o

x
3 þ h3U

z
y þ h4o

z
3 (43b)

Uz ¼ h1U
x
z � h2o

x
2 þ h3U

z
z � h4o

z
2 (43c)

y ¼ h1o
x
1 � h2f

x
þ h3o

z
1 � h4f z (43d)

where x and z denote two ends of the element and

Z ¼
x

l�
(44)
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and l* is the element length of beam; and hi is cubic Hermitian polynomials as follows:

h1 ¼ 2Z3 � 3Z2 þ 1; h2 ¼ ðZ3 � 2Z2 þ ZÞl�

h3 ¼ �2Z3 þ 3Z2; h4 ¼ ðZ3 � Z2Þl�
(45a2d)

Substituting element displacements in Eq. (43) into Eqs. (4) and (6) and integrating over the element length,
the total potential energy of thin-walled composite beam are obtained in a matrix form as

PT ¼
1
2
UT

e ðKe � o2MeÞUe �UT
e
~Fe (46)

where

Ue ¼ hU
x
x;U

x
y;U

x
z ;o

x
1;o

x
2;o

x
3; f

x;U z
x;U

z
y;U

z
z;o

z
1;o

z
2;o

z
3; f

z
i (47a)

~Fe ¼ hF
x
1;F

x
2;F

x
3;M

x
1;M

x
2;M

x
3;M

x
f;F

z
1;F

z
2;F

z
3;M

z
1;M

z
2;M

z
3;M

z
fi (47b)

In Eq. (46), Ke and Me are the element elastic stiffness matrix and the mass matrix in a local coordinate,
respectively. In this study, the stiffness matrix is evaluated using the Gauss numerical integration scheme and
the assembly of element stiffness matrix for the entire structure based on the coordinate transformation leads
to the matrix equation in a global coordinate system.

5. Numerical examples

To demonstrate the efficiency and accuracy of the present study based on the dynamic stiffness matrix, the
free vibration analysis of thin-walled composite I-beam with symmetric or arbitrary laminations is performed.
For verification, the analytical study by other researchers, the results from available references and the FE
analysis using the thin-walled Hermitian beam elements are compared in tables with the current results.

5.1. Simply supported I-beams for comparison

In this example, using the dynamic stiffness matrix, the natural frequencies for the simply supported (S–S)
I-beams with symmetric lamination are evaluated. First, we consider the I-beam which has the flange width
b ¼ 60 cm and the height h ¼ 60 cm, as shown in Fig. 3. The beam length l is 1200 cm and the total thicknesses
t of flanges and web are assumed to be 3 cm. All constituent flanges and web are assumed to be symmetrically
laminated with respect to its midplane. The graphite-epoxy (AS4/3501) is used for the beam with its material
properties: E1 ¼ 144GPa, E2 ¼ E3 ¼ 9.65GPa, G12 ¼ G13 ¼ 4.14GPa, G23 ¼ 3.45GPa, n12 ¼ n13 ¼ 0.3,
h

t

x2

x3

b

t

t

Fig. 3. Cross section of the I-beam.
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r ¼ 1389 kg/m3. Here, subscripts ‘1’ and ‘2’ correspond to directions parallel and perpendicular to fibers,
respectively. The considered laminate schemes are [0/0/0/0], [0/90/90/0] and [45/�45/�45/45]. The lowest four
torsional natural frequencies for S–S beam obtained from the exact stiffness matrix method (ESMM) are
presented and compared with the results of 20 Hermitian beam elements and the analytical solutions by
Cortı́nez and Piovan [14] and Roberts [40] in Table 1. It can be found from Table 1 that the results from this
study using only a single element agree well with those from 20 Hermitian beam elements and the analytical
solutions. It should be mentioned that the present numerical solutions are exact for the higher vibrational
modes as well as the lower ones because the displacement state vector in Eq. (34) satisfies the homogeneous
form of the equations of motion. Whereas, a large number of Hermitian beam elements are required to achieve
sufficient accuracy for the higher modes.

Next, the S-S I-beam with its length l ¼ 800 cm is considered. The flange width b and the height h are 10 and
20 cm, respectively, and the thicknesses t of flanges and web are 1 cm. The following material properties are
used: E1/E2 ¼ 40, G12/E2 ¼ 0.6, n12 ¼ 0.25. The top and bottom flanges are considered as [90/�90] lay-up and
the web laminate is assumed to be unidirectional. For convenience, the following non-dimensional natural
frequency is used as:

o� ¼
ol2

h

ffiffiffiffiffiffi
r

E2

r
(48)

Lee and Kim [2] show that in this case, the results obtained from FE analysis proposed by Lee and Kim [2]
and the analytical solutions by Roberts [40] lead discrepancy because of the coupling stiffnesses which are
neglected in the analytical analysis. In Table 2, the lowest four non-dimensional natural frequencies from this
ESMM, 20 Hermitian beam elements and the FE analysis by Lee and Kim [2] are presented. The excellent
agreement between results by this study and 20 Hermitian beam elements and Lee and Kim [2] is evident.
Table 1

Torsional natural frequencies (Hz) of S–S beam with several stacking sequences

Stacking sequence Formulation Mode

1 2 3 4

[0/0/0/0] ESMM 16.25 63.24 141.13 249.30

FE analysis 16.25 63.24 141.14 249.33

Cortı́nez and Piovan [14] 16.24 63.35 141.86 251.76

Analytical solution [40] 16.26 63.41 142.00 252.02

[0/90/90/0] ESMM 12.23 46.66 103.71 182.93

FE analysis 12.23 46.66 103.71 182.95

Cortı́nez and Piovan [14] 12.19 46.61 103.95 184.21

Analytical solution [40] 12.24 46.79 104.35 183.93

[45/�45/�45/45] ESMM 10.96 28.03 53.85 89.05

FE analysis 10.96 28.03 53.85 89.05

Cortı́nez and Piovan [14] 10.98 28.11 54.18 89.99

Analytical solution [40] 10.96 28.10 54.18 90.02

Table 2

Nondimensional natural frequencies of S–S beam with [90/�90] lay-up in the flanges

Mode ESMM FE analysis Lee and Kim [2]

1 1.192 1.192 1.193

2 4.767 4.767 4.772

3 6.798 6.798 6.780

4 10.724 10.724 10.749
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5.2. Symmetrically laminated angle-ply I-beam with various boundary conditions

The symmetric angle-ply I-beam with various fiber directions and boundary conditions are considered.
Following dimensions for I-beam are used: both of flange width and height are 5 cm, t ¼ 0.208 cm and
l ¼ 200 cm. The beam is assumed to be made of glass-epoxy with its material properties: E1 ¼ 53.78GPa,
E2 ¼ E3 ¼ 17.93GPa, G12 ¼ G13 ¼ 8.96GPa, G23 ¼ 3.45GPa, n12 ¼ n13 ¼ 0.25, n23 ¼ 0.34, r ¼ 1968.9 kg/m3.
All constituent flanges and web are assumed to be symmetrically laminated angle-ply [7c]4S with respect to its
midplane. Also 16 layers with equal thickness are considered for two flanges and web.

The natural frequencies for S–S beam obtained from ESMM are presented in Table 3 for several fiber
orientations. For comparison, the results from 20 Hermitian beam elements and the analytical solutions by
Roberts [40] are also presented. The letters Y and Z in Table 3 refer to flexural vibrations with respect to x2

and x3 axes, respectively, and the letter T refers to torsional vibration. From Table 3, it can be found that the
solutions obtained from the present ESMM coincide with the solutions by Hermitian beam elements and are
in an excellent agreement with the analytical solutions.

The 1st and 2nd frequencies for three vibration modes of beams with various boundary conditions are
depicted in Figs. 4–7 with respect to fiber angle change. The considered boundary conditions are: the
cantilevered (C–F) beam in Fig. 4, the simply (S–S) supported beam in Fig. 5, the clamped–simply (C–S)
Table 3

Natural frequencies (Hz) of S–S I-beam with [7c]4S angle-ply laminations

Stacking sequence Formulation Mode

1 2 3 4 5 6

[0]16 ESMM 24.194 35.233 45.235 96.726 109.441 180.616

FE analysis 24.194 35.233 45.235 96.727 109.442 180.616

Analytical solution [40] 24.198 35.240 45.262 96.792 109.516 181.048

Y(1) T(1) Z(1) Y(2) T(2) Z(2)

[15/�15]4S ESMM 22.997 36.247 42.996 91.940 107.655 171.678

FE analysis 22.997 36.247 42.996 91.941 107.656 171.679

Analytical solution [40] 23.001 36.253 43.022 92.003 107.729 172.089

Y(1) T(1) Z(1) Y(2) T(2) Z(2)

[30/�30]4S ESMM 19.816 37.051 37.864 79.225 102.159 147.937

FE analysis 19.816 37.051 37.864 79.226 102.159 147.938

Analytical solution [40] 19.820 37.073 37.871 79.279 102.229 148.291

Y(1) T(1) Z(1) Y(2) T(2) Z(2)

[45/�45]4S ESMM 16.487 30.827 37.915 65.916 94.884 123.085

FE analysis 16.487 30.827 37.915 65.916 94.884 123.086

Analytical solution [40] 16.490 30.845 37.921 65.961 94.949 123.380

Y(1) T(1) Z(1) Y(2) T(2) Z(2)

[60/�60]4S ESMM 14.666 27.420 35.372 58.633 87.051 109.484

FE analysis 14.666 27.420 35.372 58.633 87.051 109.485

Analytical solution [39] 14.668 27.437 35.378 58.673 87.111 109.746

Y(1) T(1) Z(1) Y(2) T(2) Z(2)

[75/�75]4S ESMM 14.077 26.319 31.313 56.278 79.330 105.087

FE analysis 14.077 26.319 31.313 56.278 79.331 105.088

Analytical solution [40] 14.079 26.335 31.318 56.316 79.385 105.339

Y(1) T(1) Z(1) Y(2) T(2) Z(2)

[90/�90]4S ESMM 13.970 26.119 29.175 55.850 75.767 104.287

FE analysis 13.970 26.119 29.175 55.850 75.768 104.288

Analytical solution [40] 13.972 26.134 29.180 55.880 75.819 104.537

Y(1) T(1) Z(1) Y(2) T(2) Z(2)
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Fig. 4. Variation of the 1st and 2nd frequencies of C–F composite beam with respect to fiber angle change.
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Fig. 5. Variation of the 1st and 2nd frequencies of S–S composite beam with respect to fiber angle change.
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supported and the clamped–clamped (C–C) beams in Figs. 6 and 7, respectively. In Figs. 4–7, the number in
parenthesis indicates the mode number for associated vibration modes Y, Z, or T.

It is seen from Fig. 4 that for C–F beam, the mode shape corresponding to the lowest natural frequency is
the flexural mode in x2 direction Y(1) and the frequencies Y(1) and Z(1) corresponding to the flexural modes in
x2 and x3 directions, respectively, decrease as the fiber angle increases. However, in torsional vibration, the
stiffness component D66 in flanges plays an important role since it affects the torsional rigidity JG, thus,
placing the fiber angle at c ¼ 451 leads to considerable increase of the torsional frequency for the 1st mode
T(1). On the other hand, for the 2nd torsional mode T(2), the frequency is maximum at c ¼ 251. Also it can be
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Fig. 6. Variation of the 1st and 2nd frequencies of C–S composite beam with respect to fiber angle change.
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Fig. 7. Variation of the 1st and 2nd frequencies of C–C composite beam with respect to fiber angle change.
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observed from Fig. 4 that the 2nd torsional mode T(2) and flexural one in x3 direction Z(2) change each other
at c ¼ 451 and 751. Similar observation can also be found in S–S beam as shown in Fig. 5. That is, the 1st
torsional mode and flexural one in x3 direction change each other at c ¼ 301. As a result, the 1st torsional
mode, which is above the flexural mode in x3 direction becomes to be below the flexural one through this mode
change phenomenon. Also similar to C–F beam, the 1st tosional frequencies are maximum at c ¼ 451 for both
of S–S and C–S beams. However, for C–C beam, as can be seen in Fig. 7, the 1st and 2nd torsional modes
including the flexural modes in x2 and x3 directions decrease as the fiber angle increases.

To investigate the effects of increase of the modulus on vibration characteristics of composite beams with
various boundary conditions, when E1 is increased into 10E1, the 1st flexural and torsional natural frequencies
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Fig. 8. Effects of increase of the modulus on the 1st frequencies of C–F composite beam with respect to fiber angle change.

0 10
Fiber angle (degree)

0

40

80

120

160

20

60

100

140

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

Y(1)
Z(1)
T(1)
Y(1): 10E1
Z(1): 10E1
T(1): 10E1

9070 806050403020

Fig. 9. Effects of increase of the modulus on the 1st frequencies of S–S composite beam with respect to fiber angle change.
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are illustrated in Figs. 8–11. It can be observed from Fig. 8 that for C–F beam with 10E1, the mode change
phenomenon between the torsional mode and the flexural mode in x3 direction occurs at c ¼ 161. Also the
fiber angle at which the fundamental mode change occurs increases as the end boundary of beam is restrained
more (i.e. c ¼ 241 for S–S beam, c ¼ 301 and 351 for C–S and C–C beams, respectively). Furthermore,
Figs. 12 and 13 show the increase ratio of the 1st flexural and torsional natural frequencies, respectively, due to
increase of the modulus. It is interesting to observe from Fig. 12 that as the fiber angle increases, the increase
ratios for the flexural modes corresponding to x2 and x3 directions decrease monotonically and both of the
flexural frequencies are unaffected by increase of the modulus after c ¼ 601 regardless of boundary



ARTICLE IN PRESS

0 10
Fiber angle (degree)

0

50

100

150

200

250

25

75

125

175

225

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

Y(1)
Z(1)
T(1)
Y(1): 10E1
Z(1): 10E1
T(1): 10E1

9080706050403020

Fig. 10. Effects of increase of the modulus on the 1st frequencies of C–S composite beam with respect to fiber angle change.
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Fig. 11. Effects of increase of the modulus on the 1st frequencies of C–C composite beam with respect to fiber angle change.
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conditions. This is because of decrease of the flexural rigidities I2 and I3. Whereas, the increase ratios for the
torsional frequencies reach its maximum at c ¼ 451 for C–F and S–S beams and at c ¼ 01 for C–S and C–C
beams.

Next, the effect of bending–twisting coupling stiffness D26 on the torsional vibrational behavior of the
composite beam is investigated. The angle-ply lamination [45/�45]NS with different numbers of N is
considered while maintaining the total thickness as constant. As N increases, the bending-twisting coupling
stiffness D26 which affects the torsional constant JG becomes negligible as presented in the 2nd column
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Fig. 13. Increase ratio of the 1st torsional natural frequencies of composite beam due to increase of the modulus.
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(D26/D22) of Table 4. It can be seen from Table 4 that the 1st torsional natural frequencies decrease slightly for
four beams with relatively greater value of coupling stiffness D26.

5.3. Arbitrarily laminated clamped I-beam

In our final example, we intend to evaluate exactly the extensionally–flexurally–torsionally coupled natural
frequencies of an arbitrarily laminated I-beam. The dimension and the material properties of beam are the
same as the previous example and the C–C boundary condition is considered. The flanges and web of the beam
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Table 4

The 1st torsional natural frequencies (Hz) of beams with [45/�45]NS lamination and with various boundary conditions

N D26/D22 C–F S–S C–S C–C

1 0.232 19.676 36.442 43.218 51.841

2 0.116 20.315 37.625 44.324 52.845

4 0.058 20.471 37.915 44.594 53.092

8 0.029 20.510 37.987 44.660 53.154

Table 5

Coupled natural frequencies (Hz) of C–C beam with [0/30/60/90] lamination

Mode FE analysis ESMM

4 6 8 10 20

1 42.457 42.412 42.404 42.402 42.401 42.400

2 51.492 51.435 51.426 51.423 51.421 51.421

3 79.544 79.460 79.445 79.441 79.439 79.439

4 117.890 117.039 116.884 116.841 116.812 116.810

5 130.547 129.692 129.542 129.501 129.474 129.472

6 220.546 218.957 218.666 218.585 218.532 218.528

7 233.654 230.423 229.327 229.011 228.799 228.785

8 247.696 244.115 243.049 242.746 242.545 242.532

9 436.053 384.308 380.073 378.715 377.783 377.719

10 441.420 398.100 393.911 392.590 391.691 391.629
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are assumed to have four layers of [0/30/60/90] lamination with equal ply thicknesses. In this case, all coupling
stiffnesses are non-zero except for S2. The lowest ten spatially coupled natural frequencies for the beam
obtained from ESMM are presented in Table 5 and compared with the results using various numbers of
Hermitian beam elements. From Table 5, it is observed that the coupled frequencies from ESMM using only a
single element are in an excellent agreement with the results obtained by using as many as 20 Hermitian beam
elements. It should be noted that the natural frequencies from the present numerical method are exact for the
higher vibrational modes as well as for the lower ones in the sense that the value of natural frequencies satisfies
the solution of a simultaneous ordinary differential equations in (10), (15) to (17) exactly. Still, a large number
of Hermitian beam elements needs to be used to obtain sufficiently accurate results especially for the higher
vibration modes.

6. Conclusion

This study is the first attempt to deal with the exact natural frequencies of thin-walled composite I-beam
with arbitrary lamination. For this, the exact dynamic stiffness matrix for the spatially coupled free vibration
analysis of thin-walled composite I-beam with symmetric and arbitrary laminations is presented. The higher-
order simultaneous ordinary differential equations of the arbitrarily laminated thin-walled beam are first
derived and transformed into the first-order differential equations by introducing 14 displacement parameters.
Then exact solutions of displacement parameters are obtained using a generalized linear eigenproblem having
complex eigenvalues. Finally the dynamic element stiffness matrix of the harmonically vibrating composite
beam is determined using member force–displacement relationships. Furthermore, the FE model using the
Hermitian beam elements including the restrained warping is developed.

Through numerical examples, it is demonstrated that results by present method using the dynamic element
stiffness matrix have shown to be in an excellent agreement with the analytical solutions, the results by
available references and those from a large number of Hermitian beam elements. Also the mode change
phenomenon, the effect of increase of the modulus and the effect of bending–twisting coupling stiffness on the
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free vibration characteristics of beams with various boundary conditions are investigated for angle-ply
laminates with different fiber orientations.

Consequently it is believed that the present numerical procedure is general enough to provide a systematic
tool for not only the numerical evaluation of exact dynamic element stiffness matrix of thin-walled composite
beam but also general solutions of simultaneous ordinary differential equations of the higher order.
Furthermore, this exact composite beam element eliminates discretization errors and is capable of predicting
an infinite number of natural frequencies of composite beams by means of a finite number of coordinates.
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Appendix A. The beam stress resultants which are equivalent to plate stress resultants

F1 ¼

Z
C

Nx ds (A.1)

F 2 ¼

Z
C

x2
qNx

qx1
�

qMx

qx1
sin c

� �
ds�m3 ¼ �

qM3

qx1
�m3 (A.2)

F3 ¼

Z
C

x3
qNx

qx1
þ

qMx

qx1
cos c

� �
dsþm2 ¼

qM2

qx1
þm2 (A.3)

M1 ¼ To þ Ts ¼

Z
C

f
qNx

qx1
þ q

qMx

qx1

� �
ds�mo �

Z
C

ðMsx þMxsÞds (A.4)

M2 ¼

Z
C

ðNxx3 þMx cos cÞds (A.5)

M3 ¼ �

Z
C

ðNxx2 �Mx sin cÞds (A.6)

Mf ¼

Z
C

ðNxoþMxqÞds (A.7)

where m1, m2, m3, and mo are the moment distributions.

Appendix B. The detailed expression of the sectional quantities

A ¼

Z
C

A�11 ds (B.1)

S2 ¼

Z
C

ðA�11x3 þ B�11 cos cÞds (B.2)

S3 ¼

Z
C

ðA�11x2 � B�11 sin cÞds (B.3)

Sw ¼

Z
C

ðA�11fþ B�11qÞds (B.4)
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Sf ¼ �2

Z
C

B�16 ds (B.5)

Hc ¼ 2

Z
C

ðB�16x3 þD�16 cos cÞds (B.6)

Hs ¼ �2

Z
C

ðB�16x2 �D�16 sin cÞds (B.7)

Hq ¼ 2

Z
C

ðB�16fþD�16qÞds (B.8)

I2 ¼

Z
C

ðA�11x2
3 þ 2B�11x3 cos cþD�11 cos

2 cÞds (B.9)

I3 ¼

Z
C

ðA�11x2
2 � 2B�11x2 sin cþD�11 sin

2 cÞds (B.10)

I23 ¼

Z
C

fA�11x2x3 þ B�11ðx2 cos c� x3 sin cÞ �D�11 sin c cos cgds (B.11)

If ¼

Z
C

ðA�11f
2
þ 2B�11qfþD�11q2Þds (B.12)

If2 ¼

Z
C

fA�11x3fþ B�11ðx3qþ f cos cÞ þD�11q cos cgds (B.13)

If3 ¼

Z
C

fA�11x2fþ B�11ðx2q� f sin cÞ �D�11q sin cgds (B.14)

JG ¼ 4

Z
C

D�66 ds (B.15)

where

A�11 ¼ A11 �
A2

12D22 � 2A12B12B22 þ A22B2
12

A22D22 � B2
22

(B.16)

A�16 ¼ A16 �
A12A26D22 � A12B22B26 � A26B12B22 þ A22B12B26

A22D22 � B2
22

(B.17)

B�11 ¼ B11 �
A12B12D22 � A12B22D12 � B2

12B22 þ A22B12D12

A22D22 � B2
22

(B.18)

B�16 ¼ B16 �
A12B26D22 � A12B22D26 � B12B22B26 þ A22B12D26

A22D22 � B2
22

(B.19)

~B
�

16 ¼ B16 �
A26B12D22 � A26B22D12 � B12B22B26 þ A22B26D12

A22D22 � B2
22

(B.20)

B�66 ¼ B66 �
A26B26D22 � A26B22D26 � B22B2

26 þ A22B26D26

A22D22 � B2
22

(B.21)
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D�11 ¼ D11 �
B2
12D22 � 2B12B22D12 þ A22D2

12

A22D22 � B2
22

(B.22)

D�16 ¼ D16 �
B12B26D22 � B12B22D26 � B22B26D12 þ A22D12D26

A22D22 � B2
22

(B.23)

D�66 ¼ D66 �
B2
26D22 � 2B22B26D26 þ A22D2

26

A22D22 � B2
22

(B.24)
Appendix C. The detailed components of matrices An, Bn and S

(1) Components of matrix An

An ¼

1 � � � � � � � � � � � � �

� A � � � � � � � � � � � �

� � 1 � � � � � � � � � � �

� � � 1 � � � � � � � � � �

� � � � 1 � � � � � � � � �

� � � � � ~I3 � � � ~I23 � � � ~If3

� � � � � � 1 � � � � � � �

� � � � � � � 1 � � � � � �

� � � � � � � � 1 � � � � �

� � � � � ~I23 � � � ~I2 � � � ~If2

� � � � � � � � � � 1 � � �

� � � � � � � � � � � 1 � �

� � � � � � � � � � � � 1 �

� �Sf � � � ~If3 � � � ~If2 � � � ~If

2
666666666666666666666666666664

3
777777777777777777777777777775

(C.1)

(2) Components of matrix Bn

Bn ¼

� b1 � � � � � � � � � � � �

b2 � � � � b3 � � � b4 � � b5 b6

� � � b1 � � � � � � � � � �

� � � � b1 � � � � � � � � �

� � � � � b1 � � � � � � � �

� b7 �b2 � b8 � � � b9 � b10 � b11 b12

� � � � � � � b1 � � � � � �

� � � � � � � � b1 � � � � �

� � � � � � � � � b1 � � � �

� b13 � � b9 � �b2 � b14 � b15 � b16 b17

� � � � � � � � � � � b1 � �

� � � � � � � � � � � � b1 �

� � � � � � � � � � � � � b1

� b18 b10 � b11 b19 b15 � b16 b20 b21 � b22 b23

2
666666666666666666666666666664

3
777777777777777777777777777775

(C.2)
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where

b1 ¼ 1; b2 ¼ �ro2A�; b3 ¼ S3; b4 ¼ S2; b5 ¼ �Sf; b6 ¼ Sw; b7 ¼ �ro2A�S3=A,

b8 ¼ �ro2I�3; b9 ¼ �ro2I�23; b10 ¼ �ro2A�ðz� zPÞ; b11 ¼ �ro2I�f3,

b12 ¼ ~Hs; b13 ¼ �ro2A�S2=A; b14 ¼ �ro2I�2; b15 ¼ ro2A�ðy� yPÞ,

b16 ¼ �ro2I�f2; b17 ¼ � ~Hc; b18 ¼ �ro2A�Sw=A; b19 ¼ �Hs; b20 ¼ Hc

b21 ¼ ro2I�o; b22 ¼ JG � ro2I�f; b23 ¼ �SfSw=A (C.3)

(3) Components of matrix S

S ¼

� A � � �S3 � � � �S2 � � Sf �Sw �

�ro2 A�
A

S3 � � �ro2I�3 � � ~I3 � �ro2I�23 � � ~I23 � �ro2I�f3
~Hs � ~If3

�ro2 A�
A

S2 � � �ro2I�23 � � ~I23 � �ro2I�2 � � ~I2 � �ro2I�f2 � ~Hc � ~If2

�ro2 A�
A

Sw Sf � �ro2I�f3 �Hs � ~If3 � �ro2I�f2 Hc � ~If2 � JG � ro2I�f �
SfSw

A
� ~If

� S2 � � �I23 � � � �I2 � � �Hc �If2 �
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